REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)
07-03-2002 * MERGEFORMAT Conference Proceedings 9 September 2002 - 11 September 2002
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

. I F61775-02-WF057
1st International Conference on Artificial Inmune Systems ICARIS 2002

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Conference Committee

5d. TASK NUMBER

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Kent at Canterbury REPORT NUMBER
University of Kent at Canterbury
Canterbury, Kent CT2 7NF N/A
UK
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
EOARD
PSC 802 BOX 14
EPO 09499-0014 11. SPONSOR/MONITOR’S REPORT NUMBER(S)
CSP 02-5057

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Final Proceedings for 1st International Conference on Artificial Immune Systems. ICARIS 2002, 9 September
2002 - 11 September 2002

Artifcial immune systems, artificial intelligence, robot control, intrusion detection, data mining, self-repair, machine
learning.

15. SUBJECT TERMS
EOARD, Artificial Intelligence, Intelligent Systems, Information Protection

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18, NUMBER | 19a. NAME OF RESPONSIBLE PERSON
= REPORT b ABSTRACT | ¢ THIS PAGE ABSTRU,;A_CT OF PAGES | Neal D. Glassman
UNCLAS UNCLAS UNCLAS 230 19b. TELEPHONE NUMBER (nclude area code)
+44 (0)20 7514 4437

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

Proceedings of ICARIS 2002

Editors: J. Timmis and P.J. Bentley

SESSION I: APPLICATIONS OF AIS

A Multilayered Immune System for Hardware Fault Tolerance within an
Embryonic Array.

R.O. Canham & A.M. Tyrrell

Extending the Computer Defense Immune System: Network Intrusion Detection

with a Multiobjective Evolutionary Programming Approach.

K.P. Anchor, J.B. Zydallis, G.H. Hunch and G.B. Lamont

AISIMAM - An Acrtificial Immune System Based Intelligent Multi-Agent
Model and its Application to a Mine Detection Problem.

S. Sathyanath and F. Sahin

Immunocomputing for Bioarrays.

A.O. Tarakanov, L.B. Goncharova, T.V. Gupalova, S.V. Kvachev and A.V. Sukhorukov
Evolving FPGA-based Robot Controllers using an Evolutionary Algorithm.
R.A. Krohling, Y. Zhou and A.M. Tyrrell

23-32

33-41

42 - 47

SESSION II: MEMORY AND AIS

Exploiting the Analogy Between Immunology and Sparse Distributed
Memories: A System for Clustering Non-stationary Data

E. Hart and P. Ross

Immune Memory in the Dynamic Clonal Selection Algorithm

J. Kim and P. Bentley

Stable Clusters Formation in an Artificial Immune System

S. Wierzchon and U. Kuzelewska

An Artificial Immune System for Continuous Analysis of Time-Varying Data
M. Neal

48 - 57
58 — 66

67 -74

75-84

SESSION I11: SELF OR NON-SELF?

Negative Selection: How to Generate Detectors

M. Ayara, J. Timmis, R. de Lemos, L. de Castro and R. Duncan

Anomaly Detection Using Negative Selection Based on the r-contiguous
Matching Rule

S. Singh

Self-Assertion versus Self-Recognition: A Tribute to Francisco Varela
H. Bersini

85-94
95-102

103 - 108

http://www.aber.ac.uk/icaris-2002/Proceedings/paper-06/CanhamTyrrellFinal1.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-06/CanhamTyrrellFinal1.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-32/Anchor-ICARIS-2002.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-32/Anchor-ICARIS-2002.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-28/icarisfinal-final.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-28/icarisfinal-final.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-03/paper03.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-02/Icaris2002_paper2_final1.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-34/emmah-icaris.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-34/emmah-icaris.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-17/icaris1_camera.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-13/paper131.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-01/neal.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-35/ayara-etal.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-24/singh02_anomdet1.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-24/singh02_anomdet1.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/bersini/Self.pdf

SESSION 1V: CONCEPTUAL PAPERS

Artificial Immune Systems as Complex Adaptive Systems

P.A. Vargas, L. de Castro and F. von Zuben 109 - 117
Building a Robust Distributed Artificial Immune Systems 118 - 125
J. Kaers, R. Wheeler and H. Verrelst
Information Immune Systems 126 - 134
D. Chao and S. Forrest
The Danger Theory and Its Application to Artificial Immune Systems 135-142
U. Aickelin and S. Cayzer
Atrtificial Immune Systems for Classification: Some Issues 143 - 147
G. Marwah and L. Boggess
On the Effects of Idiotypic Interactions for Recommendation Communities in 148 — 154
Artificial Immune Systems
S. Cayzer and U. Aickelin
An Artificial Immune System as a Recommender for Web Sites 155 - 163
T. Morrison and U. Aickelin
SESSION V: LEARNING STRATEGIES

Artificial Immune Recognition System (AIRS): Revisions and Refinements 164 - 172
A. Watkins and J. Timmis
A Model of Gene Library Evolution in the Dynamic Clonal Selection Algorithm 173 — 180
J. Kim and P. Bentley
From Optimization to Learning in Learning in Changing Environments: The 181 -190
Pittsburgh Immune Classifier System
A. Gaspar and B. Hirsbrunner

SESSION VI: HYBRIDS AND AUGMENTATIONS
Neuro-Immune and Self-Organising Map Approaches to Anomaly Detection: A
Comparison 191 -199
F. Gonzalez and D. Dasgupta
An Approach to Solve Multiobjective Optimization Problems Based on an 200 - 209
Artificial Immune System
C. Coello Coello and N. Cruz Cortes
Immunocomputing for Complex Interval Objects 210-218
S.P. Sokolva and L. Sokolova
Hierarchy and Convergence of Immune Networks: Basic ldeas and Preliminary 219 — 227

Results
L.N. de Castro and J. Timmis

http://www.aber.ac.uk/icaris-2002/Proceedings/paper-25/Vargas_etal.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-23/robust_dais.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-04/iis/icaris.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-14/paper14.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-21/AIRS.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-16/paper16.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-16/paper16.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-15/paper15.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-31/watkins-timmis.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-18/icaris2_camera.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-30/ACCEPTED.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-30/ACCEPTED.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-20/icarisGonzalezDasguptaFinal1.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-20/icarisGonzalezDasguptaFinal1.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-22/icaris02-final.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-22/icaris02-final.ps
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-19/S-L-S%20(1)(final)1.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-10/decastro_timmis.pdf
http://www.aber.ac.uk/icaris-2002/Proceedings/paper-10/decastro_timmis.pdf

A MULTILAYERED IMMUNE SYSTEM FOR HARDWARE
FAULT TOLERANCE WITHIN AN EMBRYONIC ARRAY.

R.O. Canham

AM. Tyrrell

Department of Electronics.
The university of York
Heslington, York. UK

roc100@ohm.york.ac.uk

A MULTILAYERED IMMUNE SYSTEM FOR HARDWARE
FAULT TOLERANCE WITHIN AN EMBRYONIC ARRAY.

Abstract

Biology demonstrates high levels of fault tolerance in
all instances. This paper documents a demonstration
system that takes inspiration from the immune system
and embryonic processes to acquire some of these fault
tolerant properties in hardware circuits. A multi-layer
immune system is used as fault detection; a negative
selection algorithm is used at a system level to identify
non-self states. These are localised by further tests.
Reconfiguration of the embryonic array accommodates
the faults located. The detector set for the negative
selection algorithm is currently derived by hand,
although appropriate learning algorithms are identified
and commented upon.

1 INTRODUCTION

As systems become more complex it becomes
increasingly difficult to provide comprehensive fault
testing to determine the validity of the system. Hence
faults can remain in a system which can manifest
themselves as errors. Furthermore, faults may be
introduced into a hardware system from external
sources such as electromagnetic interference.
Components within a system can die; no transistor will
function forever. These faults can ultimately cause a
system to fail. The ability of a system to function in the
presence of faults, to become fault tolerant, is a
continually increasing area of research.

Through millions of years of refinement biology has
produced many living creatures that are remarkably
fault tolerant. They can survive injury, damage, wear
and tear, and are under continual attack from other
living entities in the form of infectious pathogens. This
paper details a fault tolerant circuit that takes its
inspiration from some of the fault tolerance techniques
found in biology.

A hardware multilayered artificial immune system is
used as a fault detection system upon an embryonic
array (Tempesti 1998, Ortega 2000) which can then
accommodate the faults. The embryonic array is a

homogeneous array of logic units (called cells) that use
their location within the array to extract appropriate
configuration data. Each cell contains all the
configuration details of all cells and hence can perform
any cell’s function as required.

This is part of the POEtic project which aims to produce
a circuit that combines other forms of bio-inspired
techniques (POEtic 2002). These include phylogeny
(P), the ability of a population of individuals to change
from one generation to the next in an evolutionary
manner, ontogeny (O), the developmental processes of
an organism’s growth. Multi-cellular organisms grow
from a single cell that contains all the necessary
information, the current implementation of which is the
embryonic array. Finally epigenesis (E), the learning
process of an individual. This can not only be found in
the nervous system but also the some areas of the
immune system which learn to recognise pathogens.

Ultimately the PEOtic device will be produced in
silicon using ASIC (Application Specific Integrated
Circuit) fabrication. However, this paper details the
initial stages of just the immune system upon an
embryonic array. Although only simulated results are
given in this paper the system will shortly be
implemented in a commercial Field Programmable Gate
Array (FPGA).

2 BACKGROUND INFORMATION

2.1 ARTIFICIAL IMMUNE SYSTEMS

The immune system found in higher organisms is a
multilayered, distributed system that is robust and can
identify numerous pathogens and other harmful effects.
Many of the properties found in such a system would be
most advantageous in many computer and other
systems. Artificial immune systems do just this. They
have been applied to many different application areas,
such as: optimisation techniques (Hajela 1999, Endo

1998), novel implementations of neural networks
(Hoffmann 1986), anomaly detection (Kim 1999,
Forrest 1997), pattern recognition (Hunt 1996,
Dasgupta 1999) inductive problem solving (Slavov
1998, Nikolacv 1999) control (Ishiguro 1997),
industrial process monitoring (Ishiguru 1994, Ishida
1993), fault tolerant software (Xanthakis 1996) and
hardware fault tolerance (immunotronics) (Bradley
2000a, 2000b, 2001, 2002). Further information,
surveys and reviews can be found in Dasgupat and
Attoh-Okine (Dasgupta 1997), de Castro (Castro 1999)
and de Castro and Von Zuben (Castro 2000).

Of the many algorithms and systems researched, many
make use of the negative selection algorithm.
Developed by Forrest et al. (Forrest 1994), the negative
selection algorithm is based upon the detection of non-
self from self, as found within the immune system.
Various immune cell types (such as lymphocytes) have
receptors that allow them to bind to specific sets of
proteins. The maturation of each lymphocyte cell
involves the presentation of proteins that are naturally
present within the body (self). Lymphocytes that bind
with them are destroyed. Hence, when released within
the body, binding to a protein indicates it is non-self and
may be a harmful pathogen. See Janeway (1999),
Kimball (2002), de Castro (1999) and Alberts (1994)
for more details of immune systems. Forrest uses a
string to represent the systems state; partial matching of
these strings is used to distinguish between self and
non-self. This can be considered similar to the binding
of some lymphocytes. The negative selection algorithm
can be summarised as follows:

e A set of self strings, S, are defined. Each is of a
length, /, of a finite alphabet. The set of strings
can be gathered during operation in an
application dependent manner to describe the
state of the application.

e A set of detectors, R, is generated which fails
to partially match any member of the self set,
S. The partial match used by Forrest is defined
as a match of ¢ contiguous bits within the
string’s length.

e The state of the device under test is monitored.
Under normal operation this would generate a
member of the self set, S. However, an
abnormal process may generate a non-member
of S which can be matched by a member of the
detector set R.

The detector sets have been generated by a random
process, more efficient algorithms (D'haeseleer 1995)
and evolutionary processes (Kim 1999), including
library selection (Hunt 1996). Detectors that match self
are destroyed in a similar manner to the biological
immune system.

2.2 IMMUNOTRONICS

All the applications listed are software implementations
of an artificial immune system. The only hardware
implementation found to date is Immunotronics

(immune + electronics) by Bradley and Tyrrell (Bradley
2000a, 2000b, 2001, 2002). This makes use of a
negative selection algorithm to identify faults within a
hardware circuit, specifically a finite state machine. The
current state, next state and the current inputs are used
to define the current transition of the machine. Some of
the transitions are not present in normal, error free
operation and so are considered as non-self.
Identification of such non-self indicates the presents of
an error.

A 4 bit BCD counter implemented upon a Xilinx Virtex
FPGA was immunised. The detector set was generated
offline using both random techniques and the greedy
algorithm (D'haeseleer 1995). The detectors themselves
were implemented using a content addressable memory
(CAM) (Xilinx 1999). This allows all the elements
within the memory to be compared with the current
state very quickly. Partial matching based upon the
number of contiguous bits was employed. Experimental
results showed that a fault coverage of 93% could be
achieved with 103 detectors, which constitutes 10% of
all possible error, and therefore detector, states.

This is very impressive but requires a CAM of 103
words, each 10 bits in width. This is vast in size
compared to the counter that was being immunised.
However, the size of the detectors is not dependant on
the complexity of the circuit being immunised. It might
be considered that the counter is the wrong granularity.
Also a biological immune system never tries to provide
a fault free functionality. The underlying system
requires some inherent fault tolerance; indeed the
immune system will typically kill off infected cells. The
biological entity can easily accommodate this due to the
vast quantity of redundancy.

It is therefore more appropriate to use an immune
system at a system, or sub-system level. It would not
now be used to identify every error, but unusual
situations that indicate something erroneous has
occurred. If a robot controller is considered, the
immune system would provide monitoring for situations
that should not occur. This may include situations such
as a robot that is heading for an object.

2.3 EMBRYONICS

All multi-cellular organisms start life as a single cell.
This cell divides repeatedly to generate numerous
identical copies of itself. Each cell contains all the
information necessary to create the entire entity — the
genotype. As the number of cells increases
differentiation takes place; different cells start to change
to provide different, specialised functionality. The
appropriate section of the genotype (the appropriate
gene or genes) is selected based upon the cell’s position
as well as other factors.

Embryonics (embryo + electronics) is inspired by the
cloning and differentiation of cells within multi-cellular
organisms to generate electronic circuits with some of
the properties of such organisms (Tempesti 1998,
Ortega 2000, Prodan 2001, Stauffer 2001). An

embryonic array consists of a homogeneous array of
cells, each containing the full specification of the
device, together with a processing element and control.
The coordinate position of each cell is calculated
dependent upon its neighbours; this is used to perform
the appropriate section of the genotype. Figure 1 gives
an example of some of the major elements of a generic
array. Implementations to date typically use a very
simple functional unit (a two input multiplexer),
although a number of these units have been included in
a cell. These sub-sections of the cell have been termed
molecules.

Errors within the array are accommodated by killing the
particular cell. The routing becomes transparent and the
coordinate system no longer increments, thus the next
cell takes over the functionality of the faulty cell. The
array contains spare cells that are not utilised until a
fault occurs.

To maintain cellular alignment removing the row or
column that contains the error is typical (see Figure 2).
It should be reiterated that no configuration data has to
be recalculated or moved; just the change in coordinate
is all that is required for the cells to reconfigure
themselves. Fault avoidance has also been performed at
the molecular level. As many faults as there are spare
cells can be handled.

S

<»{ CELL [« CELL |¢—{ CELL [«

Coordinate
¢ ¢ ¢ communications
<> CELL [« CELL || CELL [Cell

communications
e 3 7 4 %
* A

A 4
<«+—p|Routing(g >
10
A Processing
_|.. Element
Genotype and Address
Address Decoding [|~
v
Figure 1: Embryonic Array
Implementations to date use replication of the

functional units and a comparator to provide built in self
tests (BISTS). At present it is assumed that the routing
and control are fault free.

Column coordinates =) Reconfigured

DDD []

2En. 25

Faulty Dead Cell
Cell Spare Transparent

Cells column

Figure 2: Accommodation of Fault

3 THE SYSTEM

3.1 OVERVIEW

The new system proposed uses a number of layers to
provide fault detection using the immune system for
inspiration. The top level is a negative selection
algorithm that learns and is analogous to the acquired
immune system. This can work at either a system or
subsystem level and monitors the state of the system for
non-self. When non-self is identified the whole system
could be relocated by killing the cells within the
embryonic array. However, such resources are rarely
available and so a second layer is used to localise the
fault. This could take many forms; here a number of
configurations are loaded which perform a number of
tests. The device could be tested in sections with a
reduced functionality, or in a roving self-test area
(STAR) (Emmert 2000, Abramovic 2001). In this
example the device is briefly placed in a safe state and
taken offline while the testing takes place, in a similar
manner to Sundararajan (2001). Cells that have errors
are identified and killed. These tests do not learn and
hence could be considered to be mapped to the
biological innate immune system.

A simple embryonic array was generated to provide the
ability to reconfigure around faults that were found. The
criteria of the array was to provide suitable functionality
to implement the immune system and to enable it to be
implemented on a commercial FPGA. Therefore it may
bear little resemblance to the embryonic array that will
be produced in the final POEtic tissue. The immune
system will provide testing for many of the areas that
current implementations of embryonics assume to be
fault free.

A simple example application is used to demonstrate
the system. This takes the form of the simplest of robot
controllers which has three single bit inputs and two
single bit outputs; the inputs represent the detection of
an object to the robot’s left, front and right. The outputs
represent signals to the robot’s left and right motors.
Hence a signal on the left motor will turn the device to
the right, both motors will cause it to travel forward and

a signal on the right motor will turn the robot to the left.
This is shown in Figure 3.

Object Detection
Left Centre Right

S S

Controller

v

Left Motor Right Motor

Motor Drive

Figure 3: Test System

The nature of the controller is not important; in this
demonstration it took the form of a simple lookup table
which was driven by a linear feedback shift register to
generate a random, complete set of inputs.

When the outputs are considered with the inputs there
are a number of states that would be considered as
normal (self-states) and those that would be considered
as abnormal (non-self). An example of this would be
the detection of a object ahead with both motors driving
the robot into it. A complete set of these non-self states
is given in Table 1. In this simple example the states
were determined by hand, although an automated
learning capability is ideal. Details of learning
processes are given in section 5.1.

Input states Outputs
Left | Ahead | Right | Left | Right
0 0 1 1 0
0 1 0 1 1
0 1 1 1 0
0 1 1 1 1
1 0 0 0 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1

Table 1: Non-self Sates

3.2 THE EMBRYONIC ARRAY

The embryonic array is based upon the hardware-
orientated arrays produced by Ortega and Tyrrell
(Ortega 2000). However, many changes were required.
Each cell of the array is constructed from a preset
number of molecules. Dedicated hardware is used to

generate other cell functionality, such as address
calculation, gene selection and maintaining the cell’s
state. Each molecule contains a four input lookup table
(LUT) and a D-type flip-flop. A three bit bus connects
each molecule to its four nearest neighbours via a
switch block that provides full connectivity. No direct
connections (that by-passed the switch block) are
present between molecules. The output of the
molecule’s LUT or flip-flop can also be connected to
any of the switch block’s outputs. Each input of the
LUT can be connected to any of the switch block’s
inputs. See Figure 4. There is no distinction between
neighbouring molecules within the same cell and the
neighbouring cells.

The configuration of each molecule is controlled by a
configuration register; each bit of this register is
implemented using a 16 bit shift register / 4 bit LUT
(i.e. the basic LUT of many FPGAs). Hence, each bit
has up to 16 possible options to be selected from. All
configuration registers of a cell are linked into a
continuous shift register which will contain the
configuration of all the cells, i.e. the genotype of the
array. Therefore, up to 16 different configurations, or
genes, can be stored and the appropriate gene selected
dependent upon the cell’s location and state. The
genotype is distributed, in parallel to each cell, to
configure the whole array.

v

Input and Output Buses

Figure 4: Molecule Block Diagram. Note the output can
bypass the D-type if required.

The coordinates for each cell are calculated based upon
its neighbours below and to its left; each cell increments
the address in the x and y axis which is then propagated
on. A mapping, from the coordinates to the selection of
the actual gene used, is provided via a lookup table. The
mapping data is present at the head of the genotype and
allows the same gene to be present in more than one, or
no cells, as required.

Faults are accommodated by typically killing the entire
column in which the faulty cell is present. A gene is

selected that sets all the switch blocks to be transparent
and the cell coordinates are no longer incremented.
However, it is also possible to kill a row. This is
necessary if the cell will not die appropriately or there is
a fault present in the transparency of the cell. This
allows a cell to be completely removed, no matter the
degree of damage (see Figure 5). Each molecule has the
ability to use its functional output to indicate that the
cell should die and the row, or column should go
transparent. This is controlled via another configuration
bit.

oooo
oooo
OO
oooo
ooo
oono
mOoO
oono

"

(0 N R W

If cell does not

Cell dies and correctly become
column becomes transparent the row can
transparent be removed as well

Figure 5: Possible reconfigurations to avoid faults

Control of the cell’s state is achieved by a small state
machine.

3.3 THE ARTIFICIAL IMMUNE SYSTEM

As stated, the fault detection takes the form of a number
of layers. The top-most layer is the implementation of a
negative selection algorithm.

3.3.1 The Negative Selection Algorithm and its

Implementation

Using the negative selection algorithm to identify
unusual situations at system level reduces the number of
error states dramatically. In this example the number is
reduced to such an extent that there are more self states
than non-self states. This makes partial matching
between detectors and the current state no longer
possible, since the partial match is more likely to match
with another self state than non-self state. The number
of holes becomes too large to be practical, even with
appropriate changes in the state representations
(Hofmeyr 1999). The nature of the partial match within
the negative selection algorithm (and in biological
systems) is very powerful and, some may argue, a key
component of the system. It allows a greatly reduced set
of detectors to identify a wider range of pathogens; the
clonal selection process (the process by which the
lymphocytes are chosen for replication) also requires a
degree of match to function correctly. However, when
implemented in hardware there are a number of
constraints and restrictions that prevent full advantage
of the partial matching. The luxury of complex software
algorithms is not available. Hardware systems tend to
maximise the hardware present and so non-used states
or conditions are minimised. Hence, most situations
would not produce the very high ratios of self to non-

self that occur in biology and provide the great power of
partial matching.

The reduced number of non-self states, and the small
number of bits in this example allows for complete
detector sets which are still very small. With a detector
of only five bits a complete comparison can be
implemented in a simple five bit lookup table
(implemented in three 4 bit LUTs). This compares
favourably with the typical CAM implementation used
in Bradley (2001) which required a LUT for every two
bits of a detector and used over 100 detectors.

The system still identifies non-self states which is the
fundamental aspect of the algorithm.

The implementation of the detectors is very simple as
can be seen in Figure 6. The three LUTs provide the
logic necessary to produce an error output for the non-
self states shown in Table 1.

Controller
\ Error
h | Signal
LUT —L
—| LUT —
A
LUT J
Detector Motor Drive LUTs provide logic for

complete coverage of
all states

inputs Signals

Figure 6: System block diagram

The array simulated used 10 molecules in a cell (two
columns of five) which allowed the linear feedback
shift register and LUTs for the controller to be
implemented in one cell and the detectors in a second
cell.

3.3.2

When a non-self state is identified the error must be
located and accommodated. This is achieved by
reconfiguring the device and performing test patterns at
a low level. The number and type of tests performed can
generate an exhaustive test sequence.

Innate Layer

Replication of the functional units within the embryonic
array has been employed in previous implementations.
This provides fault tolerance of the functional units with
acceptable overheads and could be included as an
additional layer (in biology, cells continually check
their functionality and will die by apoptosis if an error
is located, Kimball 2002). The tests would therefore
concentrate on the routine and switching of the array,
which is much harder to produce by replication. These
would be similar in nature to the offline test detailed in

Sundararajan (2001) or those performed by the roving
star (Emmert 2000, Abramovic 2001). In essence each
configuration of a switch block is induced using a
suitable test pattern generator and tester, as shown in
Figure 7. A large number of tests would be performed
in parallel, with the repetition of the same gene in a
number of the cells.

Molecule
11 y>
Test pattern
If path produces generator
Route and
wrong pattern cell . bi 4
will be killed by | SW“C‘H%“H o
1
molecule [T Test ! tes
1
T |
I I «— Cell

Figure 7: Example test configuration

The tests are typically kept within the cell which is
killed by the identification of an error within it. This
greatly simplifies any control or localisation needed to
reconfigure the device and avoid the fault. Some tests
require the data paths between cells to be included; this
too causes no complications since the whole column or
row is typically avoided.

With an appropriate architecture it would also be
possible to test the correct functionality of the cell’s
control and status and its ability to die. Hence all
aspects of the device could be tested.

A control process is necessary to carry out this
reconfiguration and error checking. On the final POEtic
device a microcontroller will be included within the
device which will be utilised. However, this generates a
large single point of failure. In an ultimate solution the
controller would be implemented within the array itself
which then offers all the fault tolerant protection
provided. It should be noted that unlike many other
FPGA fault tolerant techniques that use reconfiguration
to locate and/or avoid faults (such as Blanton 1998)
there is no complex reconfiguration calculation
required; this is all achieved by the embryonic array.
Hence, an integrated controller would be practical. With
a reasonable number of test configurations the memory
required to store them may become inappropriate.
However, the nature of the test genes is such that they
are very repetitious and so they could be simply
constructed from a number of small subsets of the gene.

Within the simulation of the test application the detector
set was replicated within its cell to prevent false
negatives. An inconsistent result from the two detector
sets causes the immune cell to be killed. Since this
example application implements the controller in a
single cell, any non-self detected causes that cell to be
killed and its column made transparent. However,
innate tests are performed to check the correct

transparency of the device. Failure of this test results in
the appropriate row being made transparent.

This transparency test requires two configurations.
These are shown in Figure 8 and Figure 9. Each row (of
three cells) is the same. In the first test, coordinate (0,0)
contains a gene A, while all the other cells use the gene
to make them transparent (as shown in Figure 8). This
generates a test pattern which passes the length of the
row and is mapped back again. The switching within
the test cell is such that the data passes through all
horizontal paths and switches to a test molecule at the
bottom of the cell. Notice that the test is repeated to
prevent an error in the test generating a false negative.
A second configuration is required to test the
transparency of the end cell, as shown in Figure 9. Gene
B is the same as A but it is mirrored in the x axis.

It is necessary for the routing to map the test signals
back; this can be achieved in the end cell or externally,
as shown.

Cell with Cell
ene A Connection transparent
g Bus gene
e
! 1
! > > .
' A | Trans [71T
: < rans 1 i
' ' complete
| b array
' |
i A » Trans » Trans :l i
1
L e 2]
' 3 bit bus
TR 2 S 7 Y ;j//
| . g 1
i Test pattern 1 -9
: generator i o
' T 1 switching
! Y .
! PSS IR
I
: [~ cell with
! Y ! gene A
: —— 1>
: [~
: v i molecules
' I e—1
: ——1
: (e
| 2 |
: :)
! Test| | 4 Test| [, |
| |
1 1

Figure 8: Transparency test

[v
=
2
w

Figure 9: Second transparency test

4 RESULTS AND DISCUSIONS

Figure 10 shows a section of simulation of the circuit.
The circuit was written in synthesisable VHDL,
optimised for a Xilinx Virtex. Hence the circuit will
easily be implemented in hardware. The lower set of
traces is an expansion of a section of the upper. Here
the inputs and the outputs to the controller can be seen
(labelled “controller”). The lower three traces are the
detector signals and the upper two traces are the
appropriate response for the motor outputs. At time
5500ns a stuck at 1 fault is injected on the output of one
of the controller outputs (the upper on the trace). This
places the device in an error state and an error signal is
generated. This causes cell 0,0 to pass from an OK
state, through a brief reconfiguration state, to a dead
state. The selected gene goes from 0001 to 0000, the
transparent gene. The state of the device goes from
normal to testl. This can be seen more clearly in the
upper set of traces, showing a larger time scale. Both
test conditions are performed before returning to a
normal state. The test passes correctly and no further
action is performed. Notice that the controller output
was on cell 0,0 which, after the testing and
reconfiguration, remains at a logic level 0. Cell 1,0 has
now taken over the functionality of the controller. The
actual output of the device would remain the same.

A similar stuck at fault is injected in the simulation
shown in Figure 11. However, the fault is inserted on
the connection bus between molecules. This error can
not be avoided by a horizontal relocation since the stuck
at fault prevents the cell from becoming transparent.

It can be seen that at time 5500ns the fault is injected
and as before the cell is killed. The two test
configurations are loaded and the tests are performed.
This time the second test fails and the Y error line is
activated which induces the cell to die and for the row
to become transparent. The combined outputs of a
number of cells are shown in the lower three traces.
Before the error is introduced (and after the
configuration) the functionality of the controller is
performed by cell 0,0. This is labelled Output Active on
the figure. After the reconfiguration, cell 1,1 now
provides the correct output. Notice that cell 1,0, the cell
that was used in the previous example, is no longer used
since the y=0 row can not be guaranteed to function
correctly.

eell_aray_insuiciock |
callo0 1
Iright_con(1)(0)(0)(0)
Iright_con(1)(0)(1)(0)
/rght_con(1)(0)(2)(0)
Iright_con(1)(0)(3)(0)
Ight_con(1)(0)(4)(0)
Cell10
Iright_con(2)(0)(0)(0)
Irght_ 1)(0)
Jright_con(2)(0)(2)(0)
Iright_con(2)(0)(3)(0)
Inght_con(2)(0)(4)(0)
Imimune Output
Jeell_error_inst/error_x
Device State
Joe)_array_tbistate [normal Jiostl T ies2 {nomal
Icell_array_thlconfig] TT I
Molecule with error state 1
Jeell_error_inst/state_x |ok Jdead

verrrrrneboorccoroc berreccoe bocrrcro bocrenenned
10us 20 us

C.C

]

’

Joell_amay_insyelock | [| [T ML

Contoller
Iright_con(1)(0)(0)(0) _ || [[I
Jright_con(1)(0)(1)(0) " |[] I I O I 1 I e
mghteon(yoyyo) _ | | T [L_ T 1IN b———
Iright_con(1)(0)(3)(0)]| | I————
Iright_con(1)(0)(4)(0) || |1 L | b—

%5

Immune Output
Jeell_srror_inst/error_x [
Device State
Jeell_array_tb/state nommal Jtestl
Jcell_array_tb/config
Molecule with error siate
Jcell_error_inst/s > X O |- [dead
Jgene_sslect 1 joooo
Lrbrrrreren trrrreeebreen trrbrererrreebien IH‘H
5460 5480 5500

Figure 10: Error injection in molecule function output

losll_array_instclock F
Jcell_array_tb/state [hormal Jtestl stz [normmal
config 1] T 1 [
cell 00 |
Jeell_emor_insterror_x |
Jeell_error_instistate_x [0k Jdead
Jeell_error_instistate_y [0k] [trans
cell20 |
Icell_emor_insterror_y | |
Icell_emor_inst/state_x ok i
Jeell_error_inst/state_y [ok] [dead
Cell outputs |
Cel00 X TT 1 I
Cell10 X 1T I I
Call11 XX I 1
(‘)Ul‘pul‘ Acﬁv‘c‘

I\\\\\‘H\I\\I\\\H\\I‘\\\\\I\\ [
10us 20us

Output Active

Figure 11: Error injected into connecting bus

S OTHER CONSIDERATIONS

5.1 LEARNING

In the example simulated the detector set was generated
by hand. However, the ability to learn is paramount to
the adaptive immune system. During the maturation of
B and T cells in a biological immune system, they are
exposed to self proteins; those that bind to these are

destroyed. This can be achieved in this application by
first setting all the states as error conditions (i.e. filling
the LUTs with 1s). A learning period, with fault free
operation, is used to present self states to the immune
system; each state that occurs is self and this state is
removed from the LUT. This type of process is
common in many artificial immune systems to generate
a detector set. Within a hardware situation there are
some difficulties. As stated, the process has to be error
free (which is sometimes difficult to guarantee) and all
self states have to be demonstrated. This becomes a
non-trivial process in a complex system. Adaptive
systems (such as those that will populate the final
POEtic device) also pose problems.

In biological systems it is not guaranteed that all cells
are exposed to all self proteins. Processes exist that
allow self binding cells to be accommodated. B cells
require co-stimulation by helper T cells (too complex
for a hardware system). The state of the immune system
also changes the response of a binding cell. If a killer T
cell binds to a protein without any other stimulation, it
is quite possible that the cell is binding with self and no
action is taken. However, if there are other indicators
that pathogens are present then the binding cell may
well replicate and kill the infected cells. Cell damage
(presented to the immune system by antigen presenting
cells) is one such indicator of the presence of
pathogens. In essence, more that one trigger is required
before potentially damaging action is instigated.

This could be emulated by using the knowledge gained
from the comprehensive testing process that follows the
artificial immune system’s detection of non-self. If no
errors are found then that detector is probably
identifying self and should be destroyed. However, care
should be taken to consider a temporary fault. Again
taking inspiration from biology, detectors should be
periodically created, or more than a single instance of
detection is required before action is taken.

Much further work is required to investigate the full
potential of this process.

5.2 SCALABILITY

The innate section of the system is not limited by scale.
The same tests are typically performed whatever the
size of the device; simply more tests are performed in
parallel.

The limit of the scalability of the implementation of the
negative selection algorithm is the size of the detector
set required. This is dependent upon the number of bits
that describe each state and the number of error states
present. The actual system size is not relevant. If a robot
controller is once more considered as an example, then
it would be probable that the outputs of any detectors
and values of motor controls would contain more bits.
However, it would be quite possible to reduce these,
with appropriate logic, to produce simple signals that
determin features such as if an object was near or that a
motor was being driven forward. Much of the extra data
are not necessary for the immune system and can be

compared to the feature extraction process performed
by the major histocompatibility complex in biological
immune systems. However, more complex systems with
much larger numbers of bits per state can still be easily
accommodated. It would no longer be appropriate to
have a complete coverage of all states which would
complicate the learning algorithm since some decision
upon which detectors to include would be required. This
is harder to implement in hardware; however, it would
not be uncommon for this to be performed in software,
offline.

6 CONCLUSIONS

A demonstration of a multilayer artificial immune
system implemented within an embryonic array for
hardware fault tolerance has been simulated. Using a
negative selection algorithm to monitor the system’s
state for situations that should not occur reduces the
number and size of the detector set hence reduces the
size of the immune system. A non-learning layer could
then be used to localise the fault.

The use of an embryonic array provides an ideal process
to avoid the faults located. The immune system adds
considerably to the fault tolerance of current
implementations of embryonic arrays.

The process currently uses a detector set that is selected
by hand; however, learning algorithms have been
identified that could be applied. The system also shows
promise for scaling to larger systems than that
demonstrated.

Acknowledgements

The authors would like to thank other members of the
POEtic team for their help and ideas. This project is
funded by the Future and Emerging Technologies
programme (IST-FET) for the European Community,
under grant IST-2000-28027 (POETIC). The
information provided is the sole responsibility of the
authors and does not reflect the Community's opinion.
The Community is not responsible for any use that
might be made of data appearing in this publication.

References

M. Abramovic, J. Emmert and C. Stroud. Roving
STARS: An Integrated Approach to On-Line Testing
Diagnosis and Fault Tolerance for FPGAs in Adaptive
Compuitng Systems. The 3rd NASA/DoD workshop on
Evolvable Hardware. Pages 73-92. 2001.

R.D. Blanton, S.C. Goldstein and H. Schmit. Tunable
Fault Tolerance via Test and Reconfiguration.
International Fault-Tolerant Computing Symposium.
1998.

B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and
J. Watson. Molecular Biology of the Cell. 3" Edition.
Garland Publishing, New York. 1994.

D.W. Bradley and A.M. Tyrrell. Immunotronics:
Hardware Fault Tolerance Inspired by the Immune

System. Proceedings of the 3rd International
Conference on Evolvable Systems. Lecture Notes in
Computer Science, Springer-Verlag. 1801:11-20.
2000a.

D.W. Bradley, A.M. Tyrrell. Hardware Fault Tolerance:
An Immunological Solution. Proceedings of IEEE

Conference on Systems, Man and Cybernetics. 1: 107-
112. 2000b.

D.W. Bradley, A.M. Tyrrell. Multi-layered Defence
Mechanisms: Architecture, Implementation and
Demonstration of a Hardware Immune System. 4th
International Conference on Evolvable System. Lecture
Notes in Computer Science. 2210:140-150. 2001.

D.W. Bradley, A.M. Tyrrell. A Hardware Immune
System for Benchmark State Machine Error Detection.
Congress on Evolutionary Computation, 2002.

L.N. de Castro. Artificial Immune Systems: Partl —
Basic Theory and Applications. Technical Report TR-
DCA 01/99. State University of Campinas. 1999.

L.N. de Castro and F. J. von Zuben. Artificial Immune
Systems: Part2 — A Survey of Applications. Technical
Report DCA-RT 02/00. State University of Campinas.
2000.

D. Dasgupta and N. Attoh-Okine. Immunity-Based
Systems: A Survey. Proceeding IEEE International
Conference on Systems, Man and Cybernetics. 1:369-
74.1997.

D. Dasgupta, Y. Cao and C. Yang. An Immunogenetic
Approach to Spectra Recognition. Proceedings of
GECCO’99. Pages 149-155. 1999.

P. Dhaeseleer. Further Efficient Algorithms for
Generating Antibody Strings. Technical Report of the
University of New Mexico. No. CS95-3,11/1/95. 1995.

J. Emmert, C. Stroud, J.Cheatham, A.M. Taylor, P.
Kataria and M. Abramovici. Performance Penalty for
Fault Tolerance in Roving STARSs. Field-Programming
Logic and Applications. Pages 545-554. 2000.

S. Endo, N. Toma and K. Yamada. Immune Algorithm
for n-TSP. Proceedings of the IEEE Systems Man and
Cybernetics’98. Pages 3844-3849. 1998.

S. Forrest, A.S. Perelson, L. Allen and R. Cherukuri,
Self-nonself discrimination in a computer. In
Proceedings of the 1994 IEEE Symposium on Research
in Security and Privacy, Los Alamos, CA: IEEE
Computer Society Press. Pages 202-12.1994.

S. Forrest, S.A. Hofmeyr and A. Somayaji. Computer
Immunology. Communications of the ACM. 40(10); 88-
96. 1997.

C.A. Janeway, P. Travers and M. WalPort. Immuno
Biology. The Immune System in Health and Disease. 4™
Ed. Current Biology Publications. London, New York.
1999.

G. W. Hoffmann. A Neural Network Model Based on
the Analogy with the Immune System. Journal of
Theoretical Biology. 122:33-67. 1986.

P. Hajela, and J. S. Yoo . Immune Network Modelling
in Design Optimization. In New Ideas in Optimization,
Editors, D. Corne, M. Dorigo and F. Glover. McGraw
Hill, London. Pages 203-215. 1999.

S.A. Hofmeyr and S. Forrest, Architecture for an
Artificial Immune System. Evolutionary Computation.
7(1):45-68. 2000.

J. E. Hunt, and D. E. Cooke. Learning Using an
Artificial Immune System. Journal of Network and
Computer Applications. 19:189-212. 1996.

A. Ishiguro and Y. Watanabe and T. Kondo. A Robot
with a Decentralized Consensus-Making Mechanism
Based on the Immune System. Proceedings of Third
International Symposium on Autonomous Decentralized
Systems. Pages 231-237. 1997.

Y. Ishida. An Immune Network Model and its
Applications to Process Diagnosis. System and
Computer in Japan. 24(6); 38-45. 1993.

A. TIshiguru, Y. Wananabe and Y. Uchikawa. Fault
Diagnosis of Plant Systems Using Immune Networks.
Proceedings of the 1994 IEEE International Conference
on Multisensor Fusion and Integration for Intelligent
Systems (MIT’ 94). Pages 34 — 42. 1994.

J. Kim and P. Bentley. Negative selection and niching
by an artificial immune system for network intrusion
detection. Late Breaking Papers at the 1999 Genetic
and Evolutionary Computation Conference. Pages 149-
158. 1999.

J.W. Kimball. Biology. Web URL:
http://www.ultranet.com/~jkimball/BiologyPages/W/W
elcome.html. 2002.

N.I. Nikolaev, H. Iba and V. Slavov. Inductive Genetic
Programming with Immune Network Dynamics.

Advances in Genetic Programming 3, MIT Press. Pages
355-376. 1999.

C.Ortega and A.M.Tyrrell A Hardware Implementation
of an Embryonic Architecture using Virtex FPGAs. In
proceedings of the 3rd International Conference on
Evolvable Systems. Lecture Notes in Computer Science.
1801:155-164. 2000.

L. Prodan, G. Tempesti, D. Mange and A. Stauffer.
Embryonics: Artificial Cells Driven by Artificial DNA.
4th International Conference ICES, Lecture Notes in
Computer Science. 2210:100-110. 2001.

POEtic Project Web Site: http://POEticTissue.org.
2002.

G. Tempesti. A Self-Repairing Multiplexer-Based
FPGA Inspired by Biological Processes. PhD Thesis.
Ecole Polytechnique Fédérale de Lausanne. 1998.

V. Slavov and N.I. Nikolaev. Immune Network
Dynamics for Inductive Problem Solving. Proc of the
5" Conference on Parallel Problem solving from
Nature. Pages 712-721. 1998.

A . Stauffer, D. Mange, G. Tempesti, and C. Teuscher.
BioWatch: A Giant Electronic Bio-Inspired Watch. The

3rd NASA/DoD Workshop on Evolvable Hardware.
Pages 185-192. 2001.

P. Sundararajan and S. McMillan and S. Guccione.
Testing FPGA Devices Using JBits. 2001 MAPLD.
2001.

S. Xanthakis, S. Kararpoulios, R. Pajot and A. Rozz.
Immune System and Fault Tolerant Computing.
Artificial Evolution - Lecture Notes